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INTRODUCTION 

MANY TRANSPORT processes occur in nature and in industrial 
applications in which the transfer of heat is governed by the 
process of natural convection. Natural convection arises in 
fluids when the temperature changes cause density variations 
leading to buoyancy forces. An excellent review of natural 
convection flows has been given by Ede [I]. Recently, 
Minkowycz and Sparrow [2, 31, Cebeci [4], and Aziz and 
Na [S] have studied the steady, laminar, incompressible, 
natural convection flow over a vertical cylinder using a local 
nonsimilarity method, a finite-difference scheme, and an 
improved perturbation method, respectively. However, they 
did not take into account the effect ofaxial heat conduction for 
small Prandtl number. It is known that the axial heat 
conductioneffect becomesimportant for low-Prandtl-number 
fluids such as a liquid metal. 

The aim of the present analysis is to study the effect of axial 
heat conduction on the steady, laminar, incompressible, 
natural convection flow over a vertical cylinder. The partial 
differential equations governing the flow have been solved 
numerically using an implicit finite-difference scheme in 
combination with the quasilinearization technique [6]. The 
results have been compared with the available results [2-51. 

GOVERNING EQUATIONS 

t To whom correspondence should be addressed. 

We consider a thin, vertical cylinder of radius rO which is 
situated in a quiescent environment having temperature T,. 
The surface of the cylinder is maintained at a uniform 
temperature T,. The axial and radial coordinates are taken to 
be x and r, with x measuring the distance along the centerline 
of the cylinder from its bottom end and r measuring normal to 
the axis of the cylinder. The gravitational force acts in the 
opposite direction to x. The fluid is assumed to have constant 

NOMENCLATURE 

F, F, dimensionless streamfunction and mass Greek symbols 
transfer parameter, respectively @, B thermal diffusivity of the fluid and 

F:, G:, skin friction and heat transfer parameters, volumetric coefficient of thermal expansion, 
respectively respectively 

9. G gravitational acceleration and 5, tl transformed coordinates 
dimensionless temperature, respectively 2, v, * axial heat conduction parameter, kinematic 

Gr, Gr, Grashof number and local Grashof number, viscosity, and dimensional streamfunction, 
respectively respectively. 

Nu, Pr Nusselt number and Prandtl number, 
respectively Superscript 

r, x radial and axial coordinates, respectively differentiation with respect to rf. 

r. radius of cylinder 
T temperature Subscripts 
n, r velocity components in x- and r-directions, x, r, 5 derivatives with respect to x, r and 5, 

respectively. respectively 
w, cc conditions at the wall and in the free 

stream, respectively. 



Technical Notes 655 

properties with a linear density-tem~rature relationship for 
the buoyancy term. The boundary-layer equations taking into 
account the effect of axial heat conduction represented by ET, 
in the energy equation can be expressed as [2-51 

(ru)X + (ru), = 0 

uu,+uu, = ga(T- T,) fr-‘v(ry), 

uT,+oT, = a[T*r+r-‘(rT&]. 

The boundary conditions are 

(la) 

(Ib) 

(W 

u=o, v=v _, T = T, at r = r0 (2a) 

u-+0, r+T, as r-+co. (2b) 

7”,-+0 as x+m. (2c) 

We apply the following transfo~ations 

< = 2(x/r0)“4(Gr)-‘/4, 9 = (Gr)““(r%; ‘- l)/2(x/ro)‘f4 

$ = 4vro(x/ro)3’4(Gr)‘i”F(& q), ru = tj,, rv = - $, 

(T- T,Y(T,- K,,) = G(t, tl), Gr = gBK,-- T&W2 

to the set of equations (I) and we find that equation (la) is 
satisfied identically and equations (lb) and (lc) reduce to 

[( 1+ &)F”]’ + 3FF” - 2F” + G = &FF; - F”F,) (3a) 

Pr-I[( I+ &)G’]’ + 3FG’+ 1($G” -24qG; + 5t)G 

- 3rG, + T2GCi) = c(F’G< - G’F,). (3b) 

After transfo~ation, the boundary conditions become 

at q=O: F=F,, F’=O, G=l 

at n=co: F’=G=O; at <=co: G,=O 

where 

(4) 

F = -(u x- ““‘/V)/[Qb(T - T w co )/4$J1’4 

l = (l/g~(GrXPrZ)-l~Z= (I/8)[g~(T,-TT,)a2x3]-~~* 

Gr, = g&T, - Tm)x3/v2, Pr = V/E. (5) 

Ifthe velocity normal to the wall v, is assumed to vary as x1J4, 
then the mass transfer parameter F, will be a constant and 
F, 2 Oaccording to whether it is a suction or an injection. The 
magnitude of the parameter 1 determines the importance of 
theaxial heat conductioneffect. For naturalconv~tionflowin 
low-Prandtl-num~r fluids (such as a liquid metal), the local 
Grashof number Gr, is large, but the Prandtl number I+ is 
small. However the product of Gr, and Pr is assumed to be 
comparatively large such that 3, < 1. Since 1 is proportional to 
.Y3”, the effect of axial heat conduction, which is large for 
small x, decreases as x increases. It may be remarked that for 
I = O(in the absence of the axial heat conduction), the govern- 
ing equations Qa) and (3b) reduce to those of classical natural 
convection flow which has been studied thorou~ly by 
Minkowycz and Sparrow [2,3], Cebeci [4], and Aziz and Na 
[S]. Also c is the transverse curvature parameter and { = 0 
corresponds to the flat plate case. 

Themain focus of the presentation ofresults will be the local 
heat transfer which is defined as [2,3] 

Nu, = -x~~~/~r)~~( ‘I?,, - T,) = - Fw(Gr,/4)“4. 

RESULTS AND DISCUSSION 

The governing equations (3a) and (3b) under boundary 
conditions (4) have been solved numerically using an implicit 
unite-different scheme in combination with the quasiiineari- 
zation technique [6]. In order to assess the accuracy of our 
method, we have compared our heat transfer results without 
axial heat conduction effect (J = 0) with those of Minkowycz 
and Sparrow [2, 31, Cebeci [4], and Aziz and Na [S], and 

Table 1. Ratio of local Nusselt numbers, (~#~)/(~u~)~~~ for 
I = F, = 0, Pr = 0.72 

Present Minkowycz Cebeci Aziz and 
5 results and Sparrow [Z] c41 Na PI 

0 1.0 1.000 l.ooo l.ooo 
0.503 1.2101 1.212 1.210 1.219 
1.064 1.4219 1.428 1.422 1.445 
2.093 1.7782 1.787 1.778 1.821 
3.364 2.1769 2.170 2.177 2.232 
4.000 2.3658 2.363 2.366 2.419 
5.030 2.6605 2.674 2.660 2.770 

Table 2. Values of local heat transfer -G, for 1= 0, 
Pr = 0.01 

i F, Present results 
Minkowycz 

and Sparrow [S] 

-1.6 0.7183(-l)* 0.7182( - 1) 
0 0 0.8057( - 1) 0.8056( - 1) 

1.6 0.8850( - 1) 0.8849( - 1) 

-1.6 0.2361 0.2354 
1.0 0 0.2449 0.2441 

1.6 0.2532 0.2523 

- 1.6 0.3801 0.3779 
2.0 0 0.3885 0.3864 

1.6 0.3969 0.3947 

-1.6 0.7788 0.7726 
5.0 0 0.7873 0.7810 

1.6 0.7965 0.7892 

*0.7182(-1)=0.7182x 10-l. 

found them to be in very good agreement. The comparison is 
shown in Tables 1 and 2. 

The effect of axial heat conduction parameter 1 on the local 
heat transfer rate, - Gw, for some representative values of Pr 
and c without mass transfer (F, = 0) is shown in Fig. 1 and 
with mass transfer (F, # 0) in Fig. 2. It is evident from these 
figures that the local heat transfer rate (- Ga) increases as the 
axial heat conduction parameter (A), Prandtl number (Pr), 
transverse curvature(r), and mass transfer (F,) increase. The 
physical reason for such a behaviour is the reduction in the 
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FIG. l.Heattransfer -G:.---Pr = 0.01 ;--_-_pr = 0.05. 
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FIG. 2. Heat transfer -G:. for I = 0.2 and Pr = 0.01. 
-F, = -2.0;-----F, = 2.0. 

thickness of the thermal boundary layer due to increase in I, 
Pr, 5 and F,. For small Pr and 5, the heat transfer (- G:) is 
found to be strongly dependent on the heat conduction 
parameter, 1. For example, when Pr = 0.05 and < = 0, the 
local heat transfer rate for I = 0.5 is found to be almost twice 
that of I = 0. This implies that the effect of the axial heat 
conduction cannot be neglected for small Pr and <. The skin 
friction parameter FL is found to depend weakly on the axial 
heat conduction parameter, 1. Hence, it is not shown here. It 
can be seen from Fig. 2 that the heat transfer, -G:, is weakly 
dependent on the mass transfer, F,, but the skin friction, F:, is 
appreciably affected by it. Since the skin friction results (Fz) for 

F, # 0 and I = 0 are given in ref. [3], they are not presented 
here. 

CONCLUSIONS 

The heat transfer increases as the axial heat conduction 
parameter, Prandtl number, transverse curvature and mass 
transfer increase. The effect of the axial heat conduction on the 
heat transfer is found to be more pronounced for small 
curvature. The skin friction is found to be weakly dependent 
on the axial heat conduction parameter. 
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